Demystifying Neural Networks (Part 3): Backpropagation – The Learning Tool of Neural Networks|揭秘神经网络(三):反向传播算法—神经网络的学习利器

In the previous blog post, we learned about the basic concepts of cost functions and gradient descent.
在上一篇博客中,我们了解了成本函数和梯度下降的基本概念。

Today, we will delve into the core of neural network training - the backpropagation algorithm, and answer some common questions.
今天,我们将深入探讨神经网络的训练核心——反向传播算法,并回答一些大家关心的问题。

1. What is Backpropagation?

什么是反向传播?

Backpropagation is an efficient algorithm used to calculate the gradient of the cost function with respect to each parameter (weight and bias) in a neural network.
反向传播(Backpropagation)是一种高效的算法,用于计算神经网络中每个参数(权重和偏置)对成本函数的梯度。

A gradient is a vector that represents the direction of the fastest change of a function at a certain point.
梯度是一个向量,表示函数在某一点处变化最快的方向。

In neural networks, the gradient indicates the degree of influence of changing the weight or bias on the cost function.
在神经网络中,梯度表示了改变权重或偏置对成本函数的影响程度。

Through these gradients, we can use optimization algorithms such as gradient descent to update parameters, thereby minimizing the cost function and improving the model's prediction accuracy.
通过这些梯度,我们可以使用梯度下降等优化算法来更新参数,从而最小化成本函数,提高模型的预测准确性。

Backpropagation vs. Forward Propagation:

反向传播与前向传播:

Forward Propagation: Input data is passed from the input layer to the output layer, layer by layer, to obtain the model's predicted output.
前向传播 (Forward Propagation): 输入数据从输入层开始,逐层传递到输出层,得到模型的预测结果。

Backpropagation: Starting from the output layer, the gradient of each parameter is calculated layer by layer, and the gradient information is passed back to the previous layer, until the input layer.
反向传播 (Backpropagation): 从输出层开始,逐层计算每个参数的梯度,并将梯度信息传递回上一层,直到输入层。

2. How Backpropagation Works

反向传播的工作原理

The core of the backpropagation algorithm is the Chain Rule, which allows us to calculate the derivative of composite functions.
反向传播算法的核心是链式法则(Chain Rule),它允许我们计算复合函数的导数。

In neural networks, the output of each layer is a function of the output of the previous layer, so we can use the chain rule to calculate the effect of each parameter on the final output (cost function).
在神经网络中,每一层的输出都是前一层输出的函数,因此我们可以利用链式法则来计算每个参数对最终输出(成本函数)的影响。

Mathematical Principles

数学原理

Assume we have a simple two-layer neural network, where w is the weight, b is the bias, a is the activation function, and L is the loss function.
假设我们有一个简单的两层神经网络,其中w是权重,b是偏置,a是激活函数,L是损失函数。

Forward propagation can be represented as: y = a(w · x + b)
前向传播可以表示为: y = a(w · x + b)

L = (y - y_true)^2

Using the chain rule, we can calculate the partial derivative of the loss function with respect to the weight:
使用链式法则,我们可以计算损失函数对权重的偏导数:

∂L/∂w = ∂L/∂y · ∂y/∂w = 2(y - y_true) · a'(w · x + b) · x

Specific Steps of Backpropagation:

反向传播的具体步骤:

  1. Forward Propagation: Calculate the output of each neuron.
    • 前向传播:计算每个神经元的输出。
  2. Calculate Output Layer Error: Compare the predicted output of the model with the true value and calculate the error.
    • 计算输出层误差:将模型的预测输出与真实值进行比较,计算误差。
  3. Backpropagate Error: Starting from the output layer, calculate the contribution (gradient) of each parameter to the error layer by layer.
    • 反向传播误差:从输出层开始,逐层计算每个参数对误差的贡献(梯度)。
  4. Update Parameters: Update the parameters using optimization algorithms such as gradient descent, based on the magnitude and direction of the gradient.
    • 更新参数:根据梯度的大小和方向,使用梯度下降等优化算法更新参数。

3. Optimization Algorithms

优化算法

Stochastic Gradient Descent (SGD)

随机梯度下降 (Stochastic Gradient Descent, SGD)

Stochastic Gradient Descent is a commonly used optimization algorithm to speed up the training process of backpropagation.
随机梯度下降是一种常用的优化算法,用于加速反向传播的训练过程。

Unlike traditional Batch Gradient Descent, Stochastic Gradient Descent uses only one training sample to update parameters at a time.
与传统的批量梯度下降不同,随机梯度下降每次只使用一个训练样本来更新参数。

This can greatly speed up the training process, especially on large datasets.
这样可以大大加快训练速度,尤其是在大规模数据集上。

Mini-Batch Gradient Descent

小批量梯度下降 (Mini-Batch Gradient Descent)

Mini-Batch Gradient Descent is a variant of Stochastic Gradient Descent that uses a small batch of training samples to update parameters at a time.
小批量梯度下降是随机梯度下降的一种变体,它每次使用一小批训练样本来更新参数。

This can achieve a better balance between training speed and stability.
这可以在训练速度和稳定性之间取得更好的平衡。

Other Optimization Algorithms

其他优化算法

Apart from SGD, there are many other optimization algorithms widely used:
除了SGD,还有许多其他优化算法被广泛应用:

  • Adam: Combines momentum and adaptive learning rates, usually converges faster than SGD.
  • Adam: 结合了动量和自适应学习率,通常比SGD收敛更快。
  • RMSprop: Adaptively adjusts learning rates, suitable for handling non-stationary objectives.
  • RMSprop: 自适应调整学习率,适合处理非平稳目标。
  • Adagrad: Automatically adjusts learning rates for different parameters, suitable for handling sparse data.
  • Adagrad: 为不同的参数自动调整学习率,适合处理稀疏数据。

4. Code Example

代码示例

Here's an example of implementing simple backpropagation using PyTorch:
以下是一个使用PyTorch实现简单反向传播的例子:

import torch
import torch.nn as nn
import torch.optim as optim

# Define a simple neural network
# 定义一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 1)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# Create model, loss function and optimizer
# 创建模型、损失函数和优化器
model = SimpleNet()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# Simulate some training data
# 模拟一些训练数据
x = torch.randn(100, 10)
y = torch.randn(100, 1)

# Training loop
# 训练循环
for epoch in range(100):
    # Forward propagation
    # 前向传播
    outputs = model(x)
    loss = criterion(outputs, y)

    # Backpropagation and optimization
    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/100], Loss: {loss.item():.4f}')

5. Frequently Asked Questions

常见问题解答

1. How to Choose the Learning Rate?

学习率如何选择?

The learning rate is an important hyperparameter that controls the step size of each parameter update.
学习率是一个重要的超参数,它控制着每次参数更新的步长。

A learning rate that is too large may lead to an unstable model, while a learning rate that is too small may lead to slow convergence of the model.
学习率过大可能导致模型不稳定,学习率过小可能导致模型收敛速度慢。

It is usually necessary to find a suitable learning rate through experimentation.
通常需要通过实验来找到合适的学习率。

One common method is learning rate decay, which gradually reduces the learning rate as training progresses.
一种常用的方法是学习率衰减,即随着训练的进行逐步减小学习率。

2. How to Avoid Vanishing and Exploding Gradients?

如何避免梯度消失和梯度爆炸?

Vanishing gradient and exploding gradient are two common problems in deep neural network training.
梯度消失和梯度爆炸是深度神经网络训练中常见的两个问题。

Solutions include:
解决方法包括:

  • Using activation functions like ReLU, avoiding easily saturated activation functions like sigmoid and tanh.
  • 使用ReLU等激活函数,避免使用sigmoid和tanh等容易饱和的激活函数。
  • Using gradient clipping to limit the magnitude of gradients.
  • 使用梯度裁剪来限制梯度的大小。
  • Using batch normalization to normalize the input of each layer.
  • 使用批量归一化来规范化每一层的输入。
  • Using residual connections, as applied in ResNet.
  • 使用残差连接,如在ResNet中的应用。

3. What are the Limitations of Backpropagation?

反向传播有哪些局限性?

  • High Computational Cost: Backpropagation requires calculating the gradient of each parameter, which is computationally expensive, especially in deep neural networks.
  • 计算量大: 反向传播需要计算每个参数的梯度,计算量较大,尤其是在深度神经网络中。
  • Prone to Local Optima: The gradient descent algorithm may fall into local optima instead of global optima.
  • 容易陷入局部最优解: 梯度下降算法可能会陷入局部最优解,而不是全局最优解。
  • Requires Large Amounts of Labeled Data: Backpropagation requires a large amount of labeled data for training, otherwise it is prone to overfitting.
  • 需要大量标注数据: 反向传播需要大量的标注数据来进行训练,否则容易出现过拟合。
  • Difficult to Parallelize: Backpropagation is essentially a sequential process, making it difficult to efficiently parallelize in large-scale distributed systems.
  • 难以并行化: 反向传播本质上是一个顺序过程,难以在大规模分布式系统中高效并行化。

6. Practical Applications

实际应用

The backpropagation algorithm has wide applications in multiple fields:
反向传播算法在多个领域都有广泛应用:

  1. Computer Vision: In tasks such as image classification and object detection, the training of Convolutional Neural Networks (CNNs) relies on backpropagation.
  2. 计算机视觉: 在图像分类、目标检测等任务中,卷积神经网络(CNN)的训练依赖于反向传播。
  3. Natural Language Processing: Used for training Recurrent Neural Networks (RNNs) and Transformer models, such as BERT and GPT.
  4. 自然语言处理: 用于训练循环神经网络(RNN)和转换器(Transformer)模型,如BERT和GPT。
  5. Recommendation Systems: Used in collaborative filtering and deep recommendation models to learn feature representations of users and items.
  6. 推荐系统: 在协同过滤和深度推荐模型中用于学习用户和物品的特征表示。
  7. Financial Forecasting: Used for tasks such as stock price prediction and risk assessment.
  8. 金融预测: 用于股票价格预测、风险评估等任务。

7. Latest Developments

最新进展

Although the backpropagation algorithm has existed for many years, it is still continuously developing:
反向传播算法虽然已经存在多年,但仍在不断发展:

  • Adversarial Gradient Descent: Enhancing model robustness by introducing adversarial samples.
  • 对抗梯度下降: 通过引入对抗样本来增强模型的鲁棒性。
  • Meta-learning: Exploring how to learn learning itself, enabling models to adapt to new tasks more quickly.
  • 元学习: 探索如何学习学习本身,使模型能够更快地适应新任务。
  • Federated Learning: Allowing multiple clients to jointly train a global model while protecting data privacy.
  • 联邦学习: 在保护数据隐私的同时,允许多个客户端共同训练一个全局模型。

8. Summary

总结

Backpropagation is the core of neural network training, enabling neural networks to learn from data and continuously optimize.
反向传播算法是神经网络训练的核心,它使得神经网络能够从数据中学习并不断优化。

Although backpropagation has some limitations, it is still one of the most effective methods for training neural networks.
虽然反向传播存在一些局限性,但它仍然是训练神经网络最有效的方法之一。

As deep learning continues to develop, we believe that the backpropagation algorithm will see more improvements and applications.
随着深度学习的不断发展,我们相信反向传播算法还会有更多的改进和应用。

We hope this blog has helped you gain a deeper understanding of the backpropagation algorithm.
希望这篇博客能帮助你更深入地了解反向传播算法。

If you have any other questions, please feel free to leave a comment below.
如果你还有其他问题,欢迎在评论区留言。

2人评论了“Demystifying Neural Networks (Part 3): Backpropagation – The Learning Tool of Neural Networks|揭秘神经网络(三):反向传播算法—神经网络的学习利器”

  1. I really like your blog.. very nice colors & theme.
    Did you create this website yourself or did you hire someone to do it for you?
    Plz answer back as I’m looking to create my own blog
    and would like to know where u got this from. thanks a lot

    1. Thank you for the kind words about my blog! I’m glad you like the colors and theme. I actually created the website myself . If you’d like to discuss it further, feel free to contact me on WhatsApp at +60177762942. I’d be happy to share some tips on getting started with your own blog.

发表评论

您的电子邮箱地址不会被公开。 必填项已用 * 标注

zh_CNChinese